# Improved Cryptanalysis of ECHO & Grøstl FSE 2010 Rump Session - Seoul - Korea

Thomas Peyrin

Ingenico

February 9th, 2010





# The AES-based functions in the SHA-3 competition

- We already know how to use freedom degrees very efficiently:
  - Rebound attack [MRST09]
  - Start-from-the-middle attack [MPRS09]
  - Super-Sbox attack [GP10,MRST10]
- But what about the differential paths?
  - Usually very good security arguments (bounds, minimal number of active Sboxes, etc.)
  - Truncated differential paths seem the best technique so far [K94,P07] ...
  - ... but let's try to improve them a little bit.

#### **ECHO**

## Consider 4 different types of truncated differential states



## Increase the granularity of the previous known paths



### Grøstl

Grostl compression function is made of two parallels permutations P and Q



**Idea:** Do not look at differences between input pairs, but between *P* and *Q* 



## Results on ECHO and Grøstl

#### Table: Results on ECHO compression function

| 1                             |        |                             |                        |                           |  |
|-------------------------------|--------|-----------------------------|------------------------|---------------------------|--|
| target                        | rounds | computational<br>complexity | memory<br>requirements | type                      |  |
| ECHO-SP-256<br>comp. function | 3/8    | 2 <sup>64</sup>             | 2 <sup>64</sup>        | semi-free-start collision |  |
|                               | 3/8    | 2 <sup>64</sup>             | 2 <sup>64</sup>        | distinguisher             |  |
| ECHO-256<br>comp. function    | 3/8    | $2^{64}$                    | $2^{64}$               | semi-free-start collision |  |
|                               | 4/8    | 2 <sup>64</sup>             | 2 <sup>64</sup>        | distinguisher             |  |
| ECHO-SP-512<br>comp. function | 3/10   | $2^{64}$                    | $2^{64}$               | semi-free-start collision |  |
|                               | 4/10   | $2^{64}$                    | $2^{64}$               | distinguisher             |  |
| ECHO-512<br>comp. function    | 3/10   | 2 <sup>96</sup>             | 2 <sup>64</sup>        | semi-free-start collision |  |
|                               | 6/10   | 2 <sup>96</sup>             | 2 <sup>64</sup>        | distinguisher             |  |

### Table: Results on Grøstl compression function

|                |        |                             | 1                      |                           |               |
|----------------|--------|-----------------------------|------------------------|---------------------------|---------------|
| target         | rounds | computational<br>complexity | memory<br>requirements | type                      | section       |
|                | 7/10   | 2 <sup>56</sup>             |                        | distinguisher             | [MPRS09]      |
| Grøstl-256     | 8/10   | 2 <sup>112</sup>            | 2 <sup>64</sup>        | distinguisher             | [GP10,MRST10] |
| comp. function | 9/10   | 280                         | 2 <sup>64</sup>        | distinguisher             | new           |
|                | 10/10  | 2 <sup>192</sup>            | 2 <sup>64</sup>        | distinguisher             | new           |
| Grøstl-512     | 7/14   | 2 <sup>152</sup>            | 2 <sup>64</sup>        | semi-free-start collision | [MRST10]      |
| comp. function | 11/14  | 2640                        | 2 <sup>64</sup>        | distinguisher             | new           |